
Community Water Forum
Tuesday May 3, 2022
Portsmouth City Hall

Safe Water Advisory Group City of Portsmouth

Welcome!

- Andrea Amico, Co-Chair
- Brian Goetz Deputy Director of Public Works, Co-Chair
- Al Pratt, Water Resources Manager
- Mason Caceres, Water Quality Specialist
- Kim McNamara, Health Officer
- Other City and Water Division staff

Safe Water Advisory Group

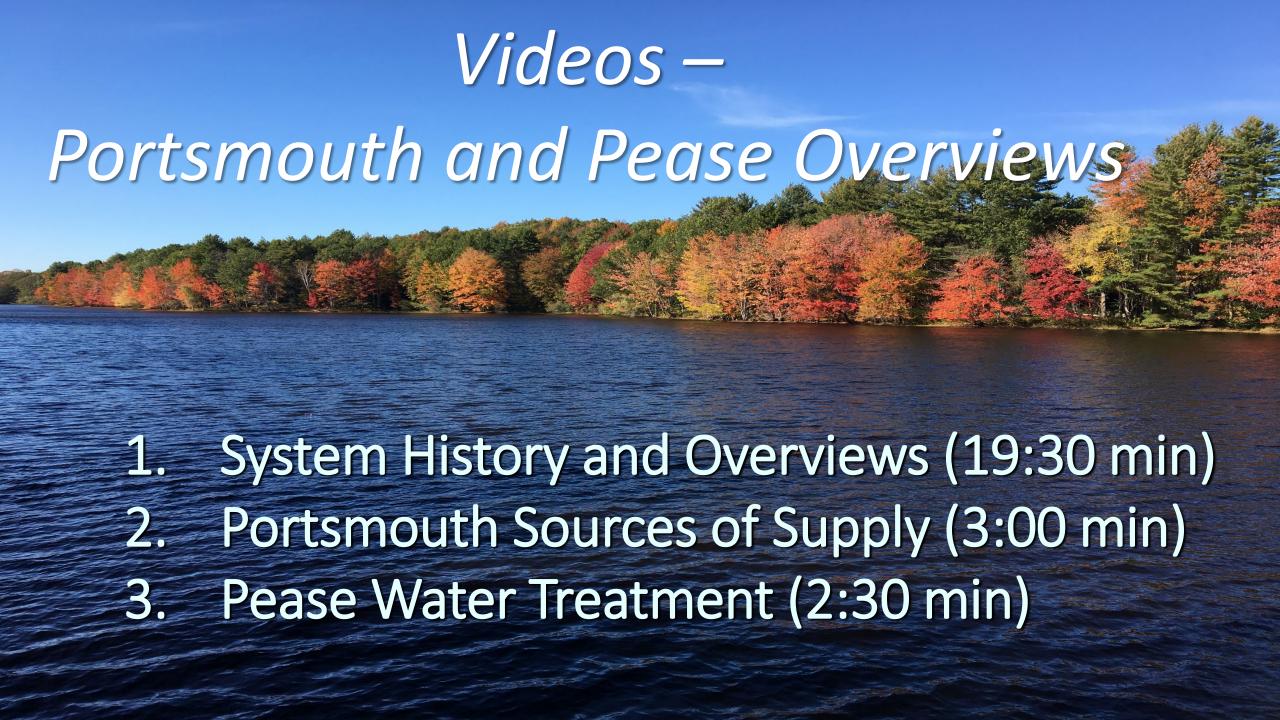
- Rich Blalock, City Councilor
- Vincent Lombardi, City Councilor
- William McQuillen, Assistant Fire Chief
- Andrea Amico, Community Member
- Rich DiPentima, Community Member
- Katrie Hillman, Community Member
- Hope Van Epps, School Board
- Laurel Schaider, Environmental Scientist/Medical Professional
- Rebecca Perkins Kwoka, State Senator
- David Meuse, State Representative
- Kim McNamara, Health Department
- Brian Goetz, Public Works/WaterVacant, Community Member

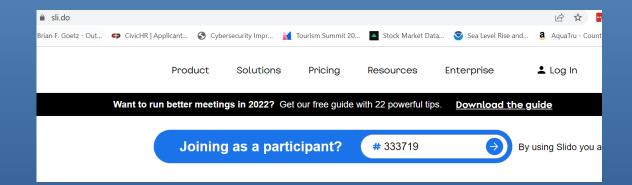
DRINKING WATER WEEK

No matter the reason.
Regardless of the season.
Your tap water is:
#ThereWhenYouNeedIt


#DrinkingWaterWeek

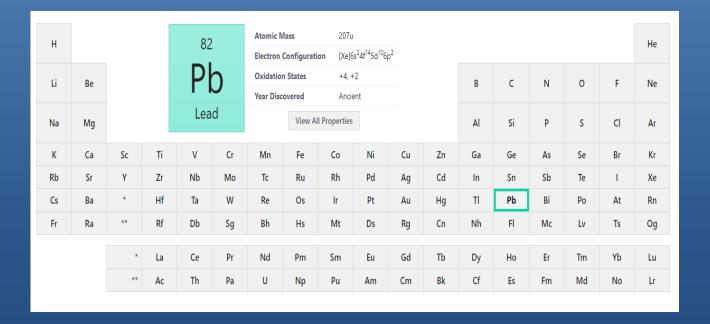
We encourage you to appreciate the high quality of your water and recognize the teams of dedicated water professionals, miles of pipes underground and cutting-edge water treatment combining to ensure your water is there, 24/7, 365 days a year.




Water Forum Agenda

- In person City Council Chambers
- Zoom participants will be muted but will have opportunity to participate during polling and during Question & Answer Session
- Event will be recorded and will be available on City's YouTube channel
- PowerPoint presentations
- Videos of water system history, sources and components
- Interactive Polling #1
- Videos on water quality
- Contaminants of concern
- Additional resources and information
- Question and Answer Session
- Interactive Polling #2


Polling – First Round:


- Open a Web Browser
- Go to:
 - Sli.do
- Enter Code:
 - **333719**

Lead -Natural Element

Lead poisoning is

100% preventable

Lead by the Numbers in 2020

Of structures in NH's highest risk communities that were built prior to 1978 when lead paint was banned for residential use.

Or 50% of NH children, 72 months or younger, reside in housing units built before the 1978 ban on lead in residential paint, where they are potentially exposed to lead hazards.

In 2020, 3,108 fewer NH children had blood lead level tests than in 2019, due to the COVID-19 pandemic. This represents a 14% drop in the State's pediatric blood lead level testing rate.

Parents of children with blood lead levels greater than 5 µg/dL, report that renovations have taken place in the home within the last six months.

Attention Deficit Disorder cases were attributed to lead exposure.

www.aap.org

It only takes a speck of lead dust the size of a grain of salt to poison a child.

SOURCES OF LEAD IN WATER

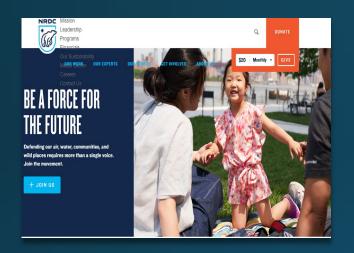
Lead is rarely found in water *before* it enters your home, but the plumbing in your home could be contributing lead to the water you drink. Lead is most likely to be found in your water first thing in the morning after the water sits in the pipes all night, or any length of time where it sits more than six hours.

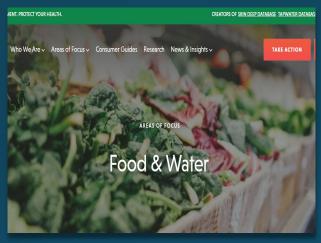
Sources of **LEAD** in Drinking Water Faucets: Fixtures inside your home may contain lead. Copper Pipe with Lead Solder: Solder made Galvanized Pipe: Lead particles can or installed before 1986 attach to the surface of contained high lead levels. galvanized pipes. Over time, the particles can enter your drinking water, causing elevated lead levels. ШТ Lead Goose Necks: Lead Service Line: The service line is the pipe that runs from Goose necks and the water main to the home's pigtails are shorter internal plumbing. Lead service pipes that connect lines can be a major source of the lead service WATER METER lead contamination in water. line to the main. MAIN WATER LINE

Source: US EPA "Concerned about lead in your drinking water?"

What does lead pipe look like?

Photos: EPA Region 5


2021 Annual Plan for Chemical Risk Evaluations Under TSCA December 21, 2021


Table 1: Status of Existing Chemical Risk Evaluations

_			
	- Comp	leted	Work
_	Comp	icica	" OIL

	Risk Evaluation (RE) Status					
Chemical	Initiate RE	Draft Scope	Final Scope	Draft RE	Completed RE	
HPS Risk Evaluations Initiated in 2016						
Methylene Chloride	Dec. 2016		June 2017	Oct. 2019	June 2020	
1-Bromopropane	Dec. 2016		June 2017	Aug. 2019	Aug. 2020	
Cyclic Aliphatic Bromide Cluster (HBCD)	Dec. 2016		June 2017	June 2019	Sept. 2020	
Carbon Tetrachloride	Dec. 2016		June 2017	June 2019	Nov. 2020	
Trichloroethylene (TCE)	Dec. 2016		June 2017	Feb. 2020	Nov. 2020	
N-Methylpyrrolidone (NMP)	Dec. 2016		June 2017	Nov. 2019	Dec. 2020	
Perchloroethylene	Dec. 2016		June 2017	Apr. 2020	Dec. 2020	
1,4-dioxane	Dec. 2016		June 2017	June 2019	Dec. 2020	
C.I. Pigment Violet 29 (PV29)	Dec. 2016		June 2017	Nov. 2018, rev. Oct. 2020	Jan. 2021	
Asbestos Part I (Chrysotile)	Dec. 2016				Dec. 2021	
Asbestos Part II (Legacy Uses)	Dec. 2016	Dec. 2021				
HPS Risk Evaluations Initiated in 2019						
Tris(2-chloroethyl)phosphate (TCEP)	Dec. 2019	Apr. 2020	Aug. 2020			
Phosphoric acid, triphenyl ester (TPP)	Dec. 2019	Apr. 2020	Aug. 2020			
1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-	Dec. 2019	Apr. 2020	Aug. 2020			
hexamethylcyclopenta [g]-2-benzopyran (HHCBA)		1				
p-Dichlorobenzene (PDCB)	Dec. 2019	Apr. 2020	Aug. 2020			
o-Dichlorobenzene (ODCB)	Dec. 2019	Apr. 2020	Aug. 2020			
Ethylene dibromide (EDB)	Dec. 2019	Apr. 2020	Aug. 2020			
Phthalic anhydride (PAD)	Dec. 2019	Apr. 2020	Aug. 2020			
1,1,2-Trichloroethane (1,1,2 TCA)	Dec. 2019	Apr. 2020	Aug. 2020			
1,2-Dichloropropane (1,2 DCP)	Dec. 2019	Apr. 2020	Aug. 2020			
1,1-Dichloroethane (1,1 DCA)	Dec. 2019	Apr. 2020	Aug. 2020			
1,2-Dichloroethane (1,2 DCA)	Dec. 2019		Aug. 2020			
4,4'-(1-Methylethylidene)bis[2, 6-dibromophenol] (TBBPA)	Dec. 2019	Apr. 2020	Aug. 2020			
Di-ethylhexyl phthalate – (1,2-Benzene- dicarboxylic acid, 1,2-bis-(2-ethylhexyl) ester) (DEHP)	Dec. 2019	Apr. 2020	Aug. 2020			
Formaldehyde (FDA)	Dec. 2019	Apr. 2020	Aug. 2020			
trans-1,2-Dichloroethylene (Trans 1,2 DCE)	Dec. 2019	Apr. 2020	Aug. 2020			
Dibutyl phthalate (1,2-Benzene-dicarboxylic acid, 1,2-dibutyl ester) (DBP)	Dec. 2019	Apr. 2020	Aug. 2020			
Butyl benzyl phthalate – 1,2-Benzene-dicarboxylic acid, 1-butyl 2(phenylmethyl) ester (BBP)	Dec. 2019	Apr. 2020	Aug. 2020			
Di-isobutyl phthalate – (1,2-Benzene-dicarboxylic acid, 1,2-bis-(2methylpropyl) ester) (DIBP)	Dec. 2019	Apr. 2020	Aug. 2020			
Dicyclohexyl phthalate (DCHP)	Dec. 2019	Apr. 2020	Aug. 2020			
1,3-Butadiene (BTD)	Dec. 2019	Apr. 2020	Aug. 2020			
Manufacturer-Requested Risk Evaluations Initiate						
Di-isodecyl phthalate (DIDP) – (1,2-	Dec. 2019	Nov. 2020	Aug. 2021			
benzenedicarboxylic acid 1,2-diisodecyl ester)	300.2017	1.0.1.2020	1.08.2021			
Di-isononyl phthalate (DINP) – (1,2-	Dec. 2019	Nov. 2020	Aug. 2021			
benzenedicarboxylic acid, 1,2-diisononyl ester)						
Octamethylcyclotetra-siloxane (D4)	Oct. 2020	Sept. 2021				

Resources

NRDC

To safeguard the earth—its people, its plants and animals, and the natural systems on which all life depends.

EWG

To empower you with breakthrough research to make informed choices and live a healthy life in a healthy environment.

Silent Spring Institute

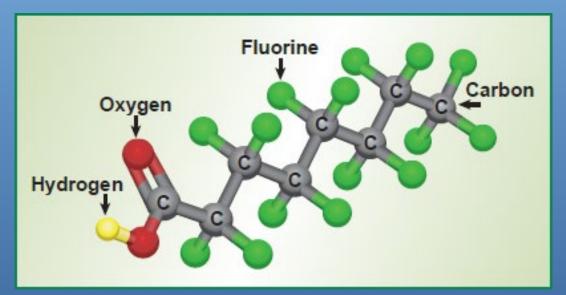
Prevent cancers by reducing people's exposure to harmful chemicals where they live, work, and play.

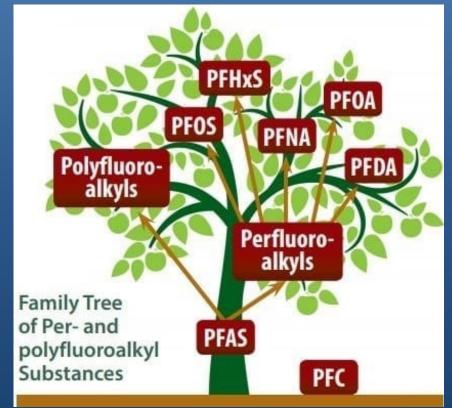
The Best Protection

- Reduce the purchase and consumption of unnecessary chemicals
- Use natural cleaners and products
- Purchase small quantities
- Avoid storing where flooding can mingle with chemicals
- Do not allow chemicals to seep into the ground or storm drains
- Dispose of properly

Household Hazardous Waste Day

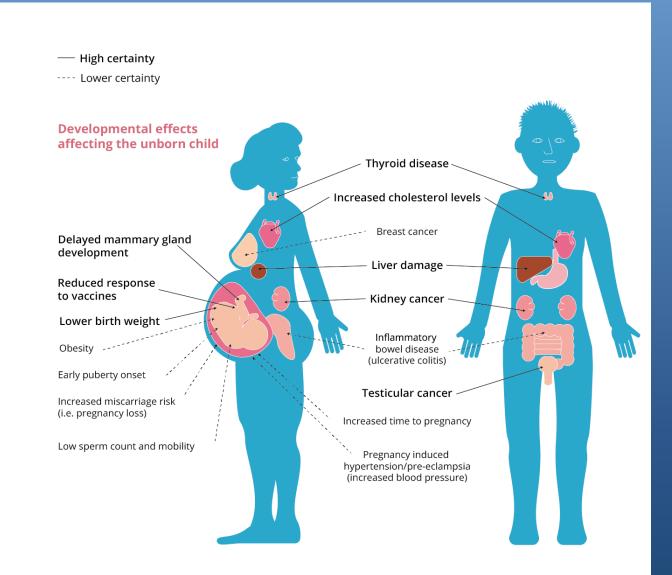
Saturday May 21 — 8am-12 noon
Portsmouth Recycling Center, 68o Peverly Hill Road


*For residents of Portsmouth, Greenland, & Newington – Proof of residency required



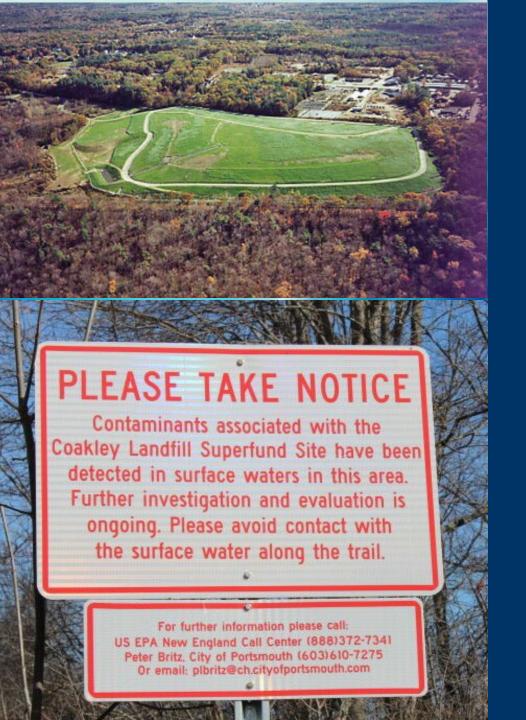
PFAS

- What are PFAS?
 - Large class of ~ 9000 manmade chemicals used in many everyday products.
 - "Forever chemicals":
 Carbon fluorine bonds in
 PFAS means the chemicals
 don't break down


PFAS

- Where are PFAS found?
 - Non stick cookware, firefighting foam, fast food packaging, weatherproof clothing, stain resistant products, carpets, furniture, dental floss, and more.
 - 99% of Americans have some detectable levels of PFAS in their blood.

PFAS

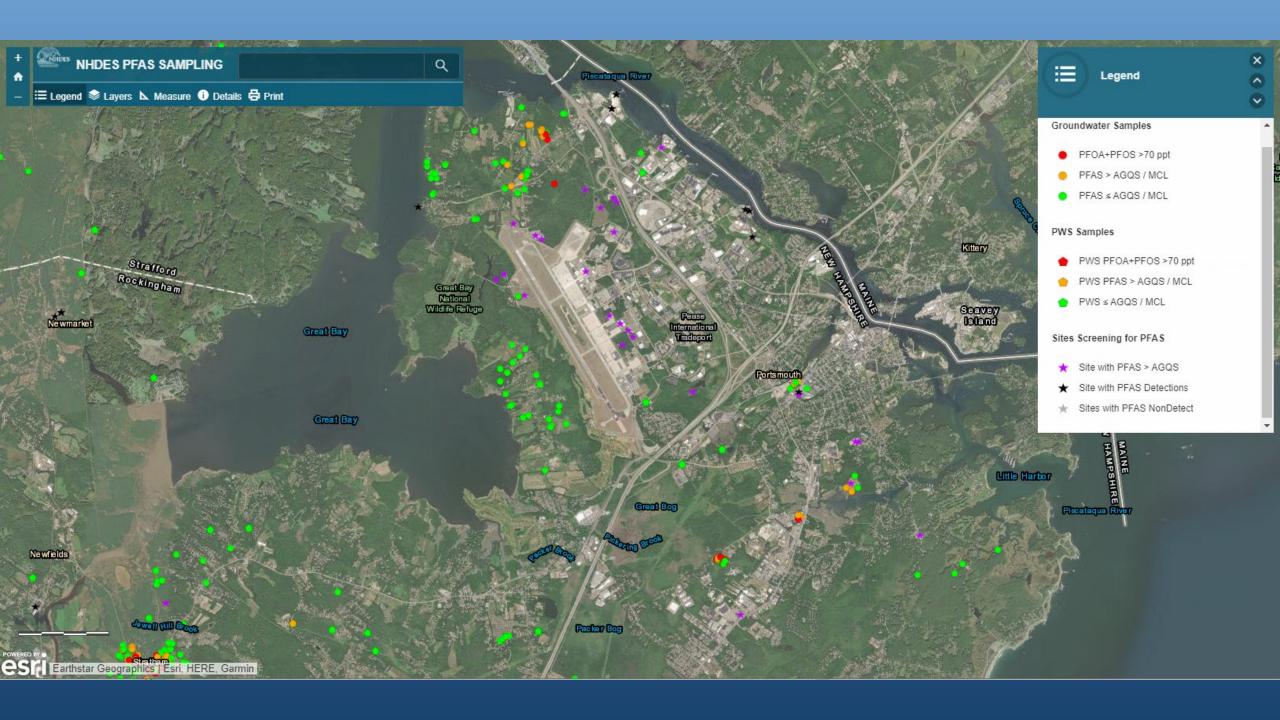

- Why are we concerned?
 - PFAS are persistent and bioaccumulate in humans, animals, and environment.
 - PFAS have been associated with:
 - Cancers (kidney, testicular)
 - High cholesterol
 - Immune suppression (less effective vaccines
 - Thyroid disorders
 - High blood pressure during pregnancy
 - Low birth weight in babies

PFAS and the City of Portsmouth: Pease Tradeport

- High levels of PFAS discovered in drinking water in 2014
- Haven well shut down from 2014-2021
- Thousands of community members exposed to contaminated drinking water
- Air Force has spent millions of dollars on remediation and filtration of water
- Current PFAS levels in Pease drinking water is non detect post filtration
- Two PFAS health studies underway to study PFAS health effects

PFAS and the City of Portsmouth: Coakley Landfill

- Former dump and current superfund site located in North Hampton.
- PFAS and 1,4 dioxane were detected in groundwater at Coakleyin2016.
- PFAS also detected in Berry's Brook in Greenland & Rye.
- Contamination from Coakley has contaminated private drinking water wells in Greenland
- City of Portsmouth oversees the Coakley Landfill Group
- There is no active remediation or filtration at Coakley Landfill to stop the contamination from spreading at this time.


PFAS and the City of Portsmouth: Tolend Road Landfill

- Tolend Road Landfill is a superfund site located in Dover adjacent to the Bellamy Reservoir (the City's largest drinking water source)
- PFAS,1,4-dioxane, and various volatile organics are present in the groundwater around the landfill
- The Dover Group and their consultant are monitoring groundwater quality and operating a groundwater mitigation system
- USEPA and NHDES are overseeing the remediation activities at this site
- City of Portsmouth and the Dover Group monitor the levels closely for any migration

ely on every day. It is being sent to every water Through 2020, the City of Portsmouth water has continued to meet all water quality standards as regulated by the US Environmental Protection Agency and the NH Department of in this report. Please contact us if you would like help understanding the information provided or have suggestions for future reports

PFAS and the City of Portsmouth: City Drinking Water

- Many tap and source samples collected in the City since 2019
- City of Portsmouth drinking water does have detectable levels of PFAS
- 11 PFAS have been detected in the City water with a total combined levels ranging from 6 ppt to 29 ppt based on source averages since January 2019
- PFAS with state and federal guidelines have been within the acceptable limit, but many of the PFAS detected have no federal or state guidelines
- PFAS can be filtered from drinking water using granular activated carbon or reverse osmosis filtration

How to get involved

City of Portsmouth

 SWAG: quarterly meetings at City Hall; current opening for a Portsmouth resident to join

Pease Tradeport Activities

- Restoration Advisory Board (RAB): quarterly meetings with US Air Force https://www.afcec.af.mil/Home/BRAC/Pease-Archives/
- Community Assistance Panel (CAP): 3 meetings a year with ATSDR https://www.atsdr.cdc.gov/pfas/activities/pease/cap.html
- PFAS-REACH Study: actively recruiting Pease community members https://silentspring.org/project/pfas-reach

State level efforts:

• Drinking water and groundwater advisory commission: quarterly meetings https://www4.des.state.nh.us/nh-dwg-trust/?page_id=89

ANNUAL WATER QUALITY REPORT PORTSMOUTH WATER SYSTEM WATER TESTING PERFORMED IN 2017 PWSID 1951010

Department of Public Works Portsmouth, New Hampshire

How to stay informed

Social media, websites, and newsletters

- Portsmouth DPW Twitter and newsletter
- Instagram: @ThinkBluePortsmouthNH
- City of Portsmouth newsletter
- Websites
 - City of Portsmouth DPW website
 - PFAS Exchange
 - EWG
- Community advocacy groups
 - Testing for Pease
 - NH Safe Water Alliance
 - National PFAS Contamination Coalition

PFAS-REACH Study actively recruiting Pease community members

Did you work at Pease before 2014? Do you have children ages 3-8?

Children ages 3 to 8 who attended daycare at Pease before 2014 or whose mothers worked at Pease before 2014 may be eligible to enroll!

Learning about your child's PFAS exposure will empower you to better protect their health.

Participants will receive up to \$125 in gift cards and a personalized report of their study results.

Contact us to sign up!

Email: <u>pfas-reach@silentspring.org</u> Call or text: 617-221-6428

bit.ly/pfas-reach

PFAS-REACH is a collaboration of Silent Spring Institute, Northeastern University, Michigan State University, Testing for Pease, Massachusetts Breast Cancer Coalition, and Community Action Works.

city Level resources: Community Resources

- SWAG: https://www.cityofportsmouth.com/citycouncil/safe-water-advisory-group
- City of Portsmouth newsletter: https://www.cityofportsmouth.com/city/welcome-portsmouths-community-newsletter
- City of Portsmouth DPW website: https://www.cityofportsmouth.com/publicworks/water/drinking-water-quality

PEASE TRADEPORT RESOURCES:

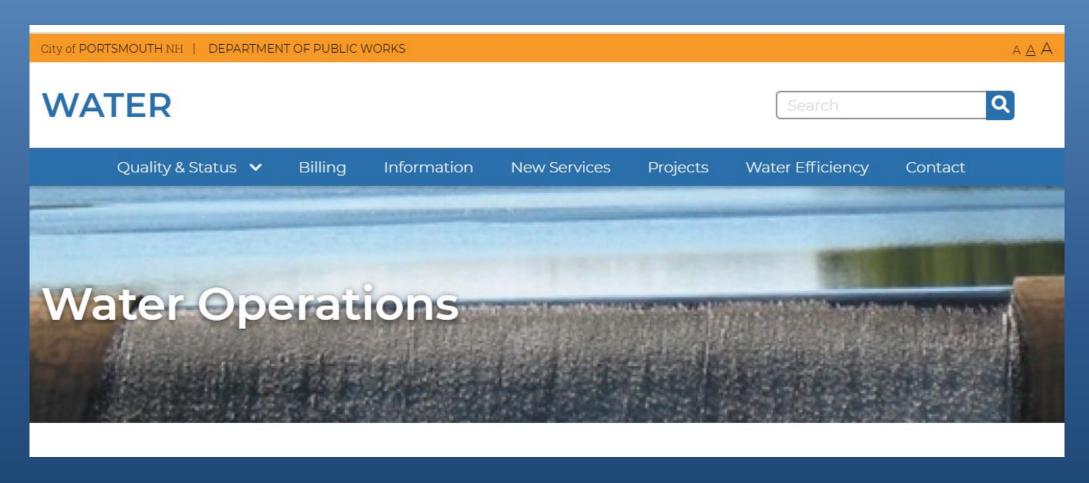
- Pease RAB with US Air Force: https://www.afcec.af.mil/Home/BRAC/Pease-Archives/
- Pease CAP with ATSDR: https://www.atsdr.cdc.gov/pfas/activities/pease/cap.html
- PFAS-REACH Study: https://silentspring.org/project/pfas-reach
- Testing for Pease: http://www.testingforpease.com/

STATE LEVEL RESOURCES:

- Drinking water and groundwater advisory commission: https://www4.des.state.nh.us/nh-dwg-trust/?page_id=89
- NH DES Drinking Water: https://www.des.nh.gov/water/drinking-water
- •NH Safe Water Alliance: https://www.facebook.com/NHSafeWater/

NATIONAL LEVEL RESOURCES:

- US EPA Ground and Drinking water: https://www.epa.gov/ground-water-and-drinking-water
- PFAS Exchange: https://pfas-exchange.org/
- Environmental Working Group: https://www.ewg.org/tapwater/
- National PFAS Contamination Coalition: https://pfasproject.net/


Questions and Answers

- Zoom participants
- In-person questions

Polling – Second Round:

- Open a Web Browser
- Go to:
 - Sli.do
- Code:
 - 470072

Additional Information: CityOfPortsmouth.com/publicworks/water

Thanks for Attending!

